大数据掘金--助力市场营销与服务的数据分析(2天)
大数据掘金--助力市场营销与服务的数据分析(2天)详细内容
大数据掘金--助力市场营销与服务的数据分析(2天)
助力市场营销与服务的数据分析实战
【课程目标】
本课程为基础课程,面向所有业务部门。
本课程的主要目的是,帮助学员了解大数据的本质,培养学员的数据意识和数据思维,掌握常用的统计分析方法和工具,以业务问题为导向,提升学员的数据分析综合能力。
本课程具体内容包括:
大数据的本质,核心数据思维
数据分析过程,数据分析框架
数据分析工具,数据可视呈现
影响因素分析,定量预测模型
本课程从实际的业务需求出发,结合行业的典型应用特点,围绕实际的商业问题,对数据分析及数据挖掘技术进行了全面的介绍(从数据收集与处理,到数据分析与挖掘,再到数据可视化和报告撰写),通过大量的操作演练,帮助学员掌握数据分析和数据挖掘的思路、方法、表达、工具,从大量的企业经营数据中进行分析,挖掘客户行为特点,帮助运营团队深入理解业务运作,以达到提升学员的数据综合分析能力,支撑运营决策的目的。
通过本课程的学习,达到如下目的:
了解数据分析的本质,理解数据决策的底层逻辑
学会搭建数据分析框架,熟悉常用的业务模型
熟悉数据分析标准过程,能够按步骤进行数据分析
掌握常用数据分析方法,熟练使用Excel高级数据分析工具
掌握常用高级定量预测模型,理解模型原理,学会解读模型含义
【授课时间】
2天时间(每天6个小时)
【授课对象】
销售部、营业厅、市场营销部、运营分析部、业务支撑部等业务及应用人员。
本课程由浅入深,结合原理主讲软件工具应用,不需要太深的数学知识,但希望掌握数据分析的相关人员。
【学员要求】
每个学员自备一台便携机(必须)。
便携机中事先安装好Excel 2013版本(建议2016版本以上)。
注:讲师可以提供试用版本软件及分析数据源。
【授课方式】
理论精讲 + 案例演练 + 实际业务问题分析 + Excel实践操作
采用互动式教学,围绕业务问题,展开数据分析过程,全过程演练操作,让学员在分析、分享、讲授、总结、自我实践过程中获得能力提升。
【课程大纲】
数据核心理念—数据思维篇
问题:什么是数据思维?大数据决策的底层逻辑以及决策依据是什么?
数字化五大技术战略:ABCDI战略
A:人工智能,目的是用机器模拟人类行为
B:区块链,构建不可篡改的分布记账系统
C:云计算,搭建按需分配的计算资源平台
D:大数据,实现智能化的判断和决策机制
I:物联网,实现万物互联通信的基础架构
大数据的本质
数据,是事物发展和变化过程中留下的痕迹
大数据不在于量大,而在于全(多维性)
业务导向还是技术导向
大数据决策的底层逻辑(即四大核心价值)
探索业务规律,按规律来管理决策
案例:客流规律与排班及最佳营销时机
案例:致命交通事故发生的时间规律
发现运营变化,定短板来运营决策
案例:考核周期导致的员工月初懈怠
案例:工序信号异常监测设备故障
理清要素关系,找影响因素来决策
案例:情绪对于股市涨跌的影响
案例:为何升职反而会增加离职风险?
预测未来趋势,通过预判进行决策
案例:惠普预测员工离职风险及挽留
案例:保险公司的车险预测与个性化保费定价
大数据决策的三个关键环节
业务数据化:将业务问题转化为数据问题
数据信息化:提取数据中的业务规律信息
信息策略化:基于规律形成业务应对策略
案例:用数据来识别喜欢赚“差价”的营业员
精准营销分析—分析步骤篇
数据分析的六步曲
步骤1:明确目的,确定分析思路
确定分析目的:要解决什么样的业务问题
确定分析思路:分解业务问题,构建分析框架
步骤2:收集数据,寻找分析素材
明确数据范围
确定收集来源
确定收集方法
步骤3:整理数据,确保数据质量
数据质量评估
数据清洗、数据处理和变量处理
探索性分析
步骤4:分析数据,寻找业务答案
选择合适的分析方法
构建合适的分析模型
选择合适的分析工具
步骤5:呈现数,解读业务规律
选择恰当的图表
选择合适的可视化工具
提炼业务含义
步骤6:撰写报告,形成业务策略
选择报告种类
完整的报告结构
演练:产品精准营销案例分析
如何搭建精准营销分析框架
精准营销分析的过程和步骤
用户行为分析—统计方法篇
问题:数据分析方法的种类?分析方法的不同应用场景?
业务分析的三个阶段
现状分析:通过企业运营指标来发现规律及短板
原因分析:查找数据相关性,探寻目标影响因素
预测分析:合理配置资源,预判业务未来的趋势
常用的数据分析方法种类
描述性分析法(对比/分组/结构/趋势/交叉…)
相关性分析法(相关/方差/卡方…)
预测性分析法(回归/时序/决策树/神经网络…)
专题性分析法(聚类/关联/RFM模型/…)
统计分析基础
统计分析两大关键要素(类别、指标)
统计分析的操作模式(类别指标)
统计分析三个操作步骤(统计、画图、解读)
透视表的三个组成部分
常用的描述性指标
集中程度:均值、中位数、众数
离散程度:极差、方差/标准差、IQR
分布形态:偏度、峰度
基本分析方法及其适用场景
对比分析(查看数据差距,发现事物变化)
演练:寻找用户的地域分布特征
演练:分析产品受欢迎情况及贡献大小
演练:用数据来探索增量不增收困境的解决方案
分布分析(查看数据分布,探索业务层次)
演练:银行用户的消费水平和消费层次分析
演练:客户年龄分布/收入分布分析案例:通信运营商的流量套餐划分合理性的评估
演练:呼叫中心接听电话效率分析(呼叫中心)
结构分析(查看指标构成,评估结构合理性)
案例:增值业务收入结构分析(通信)
案例:物流费用成本结构分析(物流)
案例:中移动用户群动态结构分析演练:财务领域的结构瀑布图、财务收支的变化瀑布图
趋势分析(发现事物随时间的变化规律)
案例:破解零售店销售规律
案例:手机销量的淡旺季分析
案例:微信用户的活跃时间规律
演练:发现客流量的时间规律
交叉分析(从多个维度的数据指标分析)
演练:用户性别+地域分布分析
演练:不同客户的产品偏好分析
演练:不同学历用户的套餐偏好分析
演练:银行用户的违约影响因素分析
用户行为分析—分析框架篇
问题:如何才能全面/系统地分析而不遗漏?如何分解和细化业务问题?
业务分析思路和分析框架来源于业务模型
常用的业务模型
外部环境分析:PEST
业务专题分析:5W2H
竞品/竞争分析:SWOT、波特五力
营销市场专题分析:4P/4C等
精准营销的业务模型(6R准则)
寻找正确的客户
匹配正确的产品
确定合理的价格
选择恰当的时机
通过合适的渠道
传递恰当的信息
案例讨论:如何构建大数据精准营销的分析框架
用户行为分析(5W2H分析思路和框架)
WHY:原因(用户需求、产品亮点、竞品优劣势)
WHAT:产品(产品喜好、产品贡献、产品功能、产品结构)
WHO:客户(基本特征、消费能力、产品偏好)
WHEN:时间(淡旺季、活跃时间、重购周期)
WHERE:区域/渠道(区域喜好、渠道偏好)
HOW:支付/促销(支付方式、促销方式有效性评估等)
HOW MUCH:价格(费用、成本、利润、收入结构、价格偏好等)
案例讨论:结合公司情况,搭建用户消费习惯的分析框架(5W2H)数据分析策略
影响因素分析—原因分析篇
营销问题:哪些因素是影响业务目标的关键要素?比如,产品在货架上的位置是否对销量有影响?价格和广告开销是如何影响销量的?影响风控的关键因素有哪些?如何判断?
影响因素分析的常见方法
相关分析(衡量两数据型变量的线性相关性)
相关分析简介相关分析的应用场景
相关分析的种类
简单相关分析
偏相关分析
距离相关分析
相关系数的三种计算公式
Pearson相关系数
Spearman相关系数
Kendall相关系数
相关分析的假设检验
相关分析的四个基本步骤
演练:营销费用会影响销售额吗?影响程度如何量化?
演练:哪些因素与汽车销量有相关性
演练:影响用户消费水平的因素会有哪些
偏相关分析
偏相关原理:排除不可控因素后的两变量的相关性
偏相关系数的计算公式
偏相关分析的适用场景
距离相关分析
方差分析(衡量类别变量与数值变量间的相关性)
方差分析的应用场景
方差分析的三个种类
单因素方差分析
多因素方差分析
协方差分析
单因素方差分析的原理
方差分析的四个步骤
解读方差分析结果的两个要点
演练:摆放位置与销量有关吗
演练:客户学历对消费水平的影响分析
演练:广告和价格是影响终端销量的关键因素吗
演练:营业员的性别、技能级别对产品销量有影响吗
演练:寻找影响产品销量的关键因素
多因素方差分析原理
多因素方差分析的作用
多因素方差结果的解读
演练:广告形式、地区对销量的影响因素分析
协方差分析原理
协方差分析的适用场景
演练:排除产品价格,收入对销量有影响吗?
列联分析/卡方检验(两类别变量的相关性分析)
交叉表与列联表:计数值与期望值
卡方检验的原理
卡方检验的几个计算公式
列联表分析的适用场景
案例:套餐类型对客户流失的影响分析
案例:学历对业务套餐偏好的影响分析
案例:行业/规模对风控的影响分析
相关性分析方法总结
定量预测模型—回归模型篇
营销问题:如何预测未来的产品销量/销售额?如果产品跟随季节性变动,该如何预测?
回归分析简介和原理
回归分析的种类
一元回归/多元回归
线性回归/非线性回归
常用回归分析方法
散点图+趋势线(一元)
线性回归工具(多元线性)
规划求解工具(非线性回归)
演练:散点图找营销费用与销售额的关系
线性回归分析的五个步骤
演练:营销费用、办公费用与销售额的关系(线性回归)
线性回归方程的解读技巧
定性描述:正相关/负相关
定量描述:自变量变化导致因变量的变化程度
回归预测模型评估
质量评估指标:判定系数R^2
如何选择最佳回归模型
演练:如何选择最佳的回归预测模型(一元曲线回归)
带分类自变量的回归预测
演练:汽车季度销量预测
演练:工龄、性别与终端销量的关系
演练:如何评估销售目标与资源最佳配置
产品销量预测—时序预测篇
时间序列简介
回归模型的缺点
时序预测常用模型
评估预测值的准确度指标
平均绝对误差MAD
均方差MSE/RMSE
平均误差率MAPE
移动平均(MA)
应用场景及原理
移动平均种类
一次移动平均
二次移动平均
加权移动平均
移动平均比率法
移动平均关键问题
期数N的最佳选择方法
最优权重系数的选取方法
演练:平板电脑销量预测及评估
演练:快销产品季节销量预测及评估
指数平滑(ES)
应用场景及原理
最优平滑系数的选取原则
指数平滑种类
一次指数平滑
二次指数平滑(Brown线性、Holt线性、Holt指数、阻尼线性、阻尼指数)
三次指数平滑
演练:煤炭产量预测
演练:航空旅客量预测及评估
结束:课程总结与问题答疑。
傅一航老师的其它课程
数据分析方法及生产运营实际应用 06.20
数据分析方法及生产运营实际应用【课程目标】本课程主要介绍数据分析在生产运营过程中的应用,适用于制造行业/保险行业的数据分析人员等。本课程的主要目的是,帮助学员了解大数据的本质,培养学员的数据意识和数据思维,掌握常用的统计分析方法和工具,以及生产、运营过程中的应用,并以概率的方式来进行决策,提升学员的数据分析及应用能力。本课程具体内容包括:数据决策逻辑,数据决
讲师:傅一航详情
数据建模及模型优化大赛辅导实战 06.20
大数据建模大赛辅导实战【课程目标】本课程主要面向专业人士的大数据建模竞赛辅导需求(假定学员已经完成Python建模及优化--回归篇/分类篇的学习)。通过本课程的学习,达到如下目的:熟悉大赛常用集成模型掌握模型优化常用措施,掌握超参优化策略掌握特征工程处理,以及对模型质量的影响掌握建模工程管道类(Pipeline,ColumnTransformer)的使用【授
讲师:傅一航详情
大数据时代下的精准营销(1天) 06.20
大数据时代的精准营销【课程目标】本课程从实际的市场营销问题出发,了解大数据在市场营销领域的价值以及应用。并对大数据分析与挖掘技术进行了介绍,通过从大量的市场营销数据中分析潜在的客户特征,挖掘客户行为特点,实现精准营销,帮助市场营销团队深入理解业务运作,支持业务策略制定以及营销决策。通过本课程的学习,达到如下目的:了解大数据营销内容,掌握大数据在营销中的应用。
讲师:傅一航详情
大数据时代下的精准营销(1天-金融行业) 06.20
大数据时代的精准营销【课程目标】本课程从实际的市场营销问题出发,了解大数据在市场营销领域的价值以及应用。并对大数据分析与挖掘技术进行了介绍,通过从大量的市场营销数据中分析潜在的客户特征,挖掘客户行为特点,实现精准营销,帮助市场营销团队深入理解业务运作,支持业务策略制定以及营销决策。通过本课程的学习,达到如下目的:了解大数据营销内容,掌握大数据在营销中的应用。
讲师:傅一航详情
大数据思维与商业模式创新,赋能企业增长 06.20
大数据决策思维与商业模式创新,赋能企业增长【课程目标】本课程主要帮助大家理解大数据的基本概念,着重探索大数据的本质,理解大数据的核心价值,以及掌握实现大数据价值的三个关键环节,大数据解决业务问题的六个步骤,然后聚焦大数据的七大核心思维,最后,再用案例说明了大数据在各行业的应用场景。大数据思维,让决策更科学!让管理更高效!让营销更精准!通过本课程的学习,达到如
讲师:傅一航详情
大数据思维与数字化转型(2天) 06.20
大数据思维与应用创新【课程目标】本课程主要帮助大家理解大数据的基本概念,着重探索大数据的本质,理解大数据的核心价值,以及掌握实现大数据价值的三个关键环节,大数据解决业务问题的六个步骤,然后聚焦大数据的七大核心思维,最后,再用案例说明了大数据在各行业的应用场景。大数据思维,让决策更科学!让管理更高效!让营销更精准!通过本课程的学习,达到如下目的:了解大数据基本
讲师:傅一航详情
大数据思维与应用创新(1天) 06.20
大数据思维与应用创新【课程目标】本课程主要帮助大家理解大数据的基本概念,着重探索大数据的本质,理解大数据的核心价值,以及掌握实现大数据价值的三个关键环节,大数据解决业务问题的六个步骤,然后聚焦大数据的七大核心思维,最后,再用案例说明了大数据在各行业的应用场景。大数据思维,让决策更科学!让管理更高效!让营销更精准!通过本课程的学习,达到如下目的:了解大数据基本
讲师:傅一航详情
大数据思维与应用创新(1天-金融) 06.20
大数据思维与应用创新【课程目标】本课程主要帮助大家理解大数据的基本概念,着重探索大数据的本质,理解大数据的核心价值,以及掌握实现大数据价值的三个关键环节,大数据解决业务问题的六个步骤,然后聚焦大数据的七大核心思维,最后,再用案例说明了大数据在各行业的应用场景。大数据思维,让决策更科学!让管理更高效!让营销更精准!通过本课程的学习,达到如下目的:了解大数据基本
讲师:傅一航详情
大数据挖掘工具:SPSSStatistics入门与提高【课程目标】本课程为数据分析和挖掘的工具篇,本课程面向数据分析部等专门负责数据分析与挖掘的人士,专注大数据挖掘工具SPSSStatistics的培训。IBMSPSS工具是面向非专业人士的高级的分析工具(挖掘工具),它提供大量的分析方法和分析模型,能够解决更复杂的业务问题,比如影响因素分析、客户行为预测/精
讲师:傅一航详情
金融行业风险预测模型实战培训(2-3天) 06.20
金融行业风险预测模型实战【课程目标】本课程专注于金融行业的风控模型,面向数据分析部等专门负责数据分析与建模的人士。本课程的主要目的是,培养学员的大数据意识和大数据思维,掌握常用的数据分析方法和数据分析模型,并能够用于对客户行为作分析和预测,提升学员的数据分析综合能力。通过本课程的学习,达到如下目的:掌握数据分析和数据建模的基本过程和步骤掌握客户行为分析中常用
讲师:傅一航详情
- [潘文富] 中小企业招聘广告的内容完
- [潘文富] 优化考核方式,减少员工抵
- [潘文富] 厂家心目中的理想化经销商
- [潘文富] 经销商的产品驱动与管理驱
- [潘文富] 消费行为的背后
- [王晓楠] 辅警转正方式,定向招录成为
- [王晓楠] 西安老师招聘要求,西安各区
- [王晓楠] 西安中小学教师薪资福利待遇
- [王晓楠] 什么是备案制教师?备案制教
- [王晓楠] 2024年陕西省及西安市最
- 1社会保障基础知识(ppt) 21149
- 2安全生产事故案例分析(ppt) 20177
- 3行政专员岗位职责 19034
- 4品管部岗位职责与任职要求 16208
- 5员工守则 15448
- 6软件验收报告 15383
- 7问卷调查表(范例) 15103
- 8工资发放明细表 14540
- 9文件签收单 14183