大数据分析与挖掘综合能力提升实战(进阶I-2天)
大数据分析与挖掘综合能力提升实战(进阶I-2天)详细内容
大数据分析与挖掘综合能力提升实战(进阶I-2天)
大数据分析与挖掘综合能力提升实战
【课程目标】
本课程为进阶课程,面向所有业务支撑部门及数据分析部门。
本课程的主要目的是,帮助学员掌握大数据建模基础知识,帮助学员构建系统全面的预测建模思维,提升学员的数据建模综合能力。
本课程具体内容包括:
数据建模流程,特征工程处理
线性回归模型,模型基本原理
模型质量评估,模型优化措施
回归方程解读,自定义回归模型
本系列课程从实际的业务需求出发,结合行业的典型应用特点,围绕实际的商业问题,对数据预测建模的过程进行了全面的介绍(从模型选择,到特征选择,再到训练模型,评估模型,以及优化模型和模型解读),通过大量的操作演练,帮助学员掌握数据建模的思路、方法、技巧,以提升学员的数据建模的能力,支撑运营决策的目的。
通过本课程的学习,达到如下目的:
掌握数据建模的标准过程和步骤
掌握建模前的特征选择常用方法,学会寻找影响业务的关键要素
掌握回归预测模型基本原理,学会解读回归方程的含义
理解并掌握定量预测模型的评估指标的含义
学会利用规划求解实现自定义回归模型(非线性回归模型)
掌握常用的回归模型优化措施
熟练掌握数据预处理的基本任务,并根据业务实际情况进行处理
【授课时间】
2天时间(每天6个小时)
【授课对象】
产品销量部、业务支撑部、运营分析部、数据分析部、大数据系统开发部等对业务数据分析有较高要求的相关人员。
【学员要求】
每个学员自备一台便携机(必须)。
便携机中事先安装好Microsoft Office Excel 2013版本及以上。
便携机中事先安装好IBM SPSS Statistics v19版本及以上。
注:讲师可以提供试用版本软件及分析数据源。
【授课方式】
理论精讲 + 模型原理 + 实际业务问题分析 + 工具实践操作
采用互动式教学,围绕业务问题,展开数据分析过程,全过程演练操作,让学员在分析、分享、讲授、总结、自我实践过程中获得能力提升。
【课程大纲】
数据建模过程—建模步骤篇
预测建模六步法
选择模型:基于业务选择恰当的数据模型
特征工程:选择对目标变量有显著影响的属性来建模
训练模型:采用合适的算法对模型进行训练,寻找到最优参数
评估模型:进行评估模型的质量,判断模型是否可用
优化模型:如果评估结果不理想,则需要对模型进行优化
应用模型:如果评估结果满足要求,则可应用模型于业务场景
数据挖掘常用的模型
定量预测模型:回归预测、时序预测等
定性预测模型:逻辑回归、决策树、神经网络、支持向量机等
市场细分:聚类、RFM、PCA等
产品推荐:关联分析、协同过滤等
产品优化:回归、随机效用等
产品定价:定价策略/最优定价等
特征工程/特征选择/变量降维
基于变量本身特征
基于相关性判断
因子合并(PCA等)
IV值筛选(评分卡使用)
基于信息增益判断(决策树使用)
模型评估
模型质量评估指标:R^2、正确率/查全率/查准率/特异性等
预测值评估指标:MAD、MSE/RMSE、MAPE、概率等
模型评估方法:留出法、K拆交叉验证、自助法等
其它评估:过拟合评估、残差检验
模型优化
优化模型:选择新模型/修改模型
优化数据:新增显著自变量
优化公式:采用新的计算公式
集成思想:Bagging/Boosting/Stacking
常用预测模型介绍
时序预测模型
回归预测模型
分类预测模型
影响因素分析—特征工程篇
问题:如何选择合适的属性/特征来建模呢?选择的依据是什么?比如价格是否可用于产品销量预测?
数据预处理vs特征工程
特征选择常用方法
相关分析、方差分析、卡方检验
相关分析(衡量两数据型变量的线性相关性)
相关分析简介相关分析的应用场景
相关分析的种类
简单相关分析
偏相关分析
距离相关分析
相关系数的三种计算公式
Pearson相关系数
Spearman相关系数
Kendall相关系数
相关分析的假设检验
相关分析的四个基本步骤
演练:营销费用会影响销售额吗?影响程度如何量化?
演练:哪些因素与汽车销量有相关性
演练:影响用户消费水平的因素会有哪些
偏相关分析
偏相关原理:排除不可控因素后的两变量的相关性
偏相关系数的计算公式
偏相关分析的适用场景
方差分析(衡量类别变量与数值变量间的相关性)
方差分析的应用场景
方差分析的三个种类
单因素方差分析
多因素方差分析
协方差分析
单因素方差分析的原理
方差分析的四个步骤
解读方差分析结果的两个要点
演练:摆放位置与销量有关吗
演练:客户学历对消费水平的影响分析
演练:广告和价格是影响终端销量的关键因素吗
演练:营业员的性别、技能级别对产品销量有影响吗
演练:寻找影响产品销量的关键因素
多因素方差分析原理
多因素方差分析的作用
多因素方差结果的解读
演练:广告形式、地区对销量的影响因素分析
协方差分析原理
协方差分析的适用场景
演练:排除产品价格,收入对销量有影响吗?
列联分析/卡方检验(两类别变量的相关性分析)
交叉表与列联表:计数值与期望值
卡方检验的原理
卡方检验的几个计算公式
列联表分析的适用场景
案例:套餐类型对客户流失的影响分析
案例:学历对业务套餐偏好的影响分析
案例:行业/规模对风控的影响分析
定量预测模型—回归模型篇
营销问题:如何预测未来的产品销量/销售额?如果产品跟随季节性变动,该如何预测?
回归分析简介和原理
回归分析的种类
一元回归/多元回归
线性回归/非线性回归
常用回归分析方法
散点图+趋势线(一元)
线性回归工具(多元线性)
规划求解工具(非线性回归)
演练:散点图找营销费用与销售额的关系
线性回归分析的五个步骤
演练:营销费用、办公费用与销售额的关系(线性回归)
线性回归方程的解读技巧
定性描述:正相关/负相关
定量描述:自变量变化导致因变量的变化程度
回归预测模型评估
质量评估指标:判定系数R^2
如何选择最佳回归模型
演练:如何选择最佳的回归预测模型(一元曲线回归)
带分类自变量的回归预测
演练:汽车季度销量预测
演练:工龄、性别与终端销量的关系
演练:如何评估销售目标与资源最佳配置
自动筛选不显著因素(自变量)
定量预测模型—回归优化篇
回归分析的基本原理
三个基本概念:总变差、回归变差、剩余变差
方程的显著性检验:方程可用性
因素的显著性检验:因素可用性
方程拟合优度检验:质量好坏程度
理解标准误差含义:预测准确性?
回归模型优化措施:寻找最佳回归拟合线
如何处理预测离群值(剔除离群值)
如何剔除不显著因素(剔除不显著因素)
如何进行非线性关系检验(增加非线性自变量)
如何进行相互作用检验(增加相互作用自变量)
如何进行多重共线性检验(剔除共线性自变量)
演练:模型优化演示
好模型都是优化出来的
定量预测模型—自定义回归篇
回归建模的本质
规划求解工具简介
自定义回归模型
案例:如何对客流量进行建模预测及模型优化
回归季节预测模型模型
回归季节模型的原理及应用场景
加法季节模型
乘法季节模型
模型解读
案例:美国航空旅客里程的季节性趋势分析
新产品累计销量的S曲线
S曲线模型的应用场景(最大累计销量及销量增长的拐点)
珀尔曲线
龚铂兹曲线
案例:如何预测产品的销售增长拐点,以及销量上限
演练:预测IPad产品的销量
定量预测模型—模型评估篇
定量预测模型的评估
方程显著性评估
因素显著性评估
拟合优度的评估
估计标准误差评估
预测值准确度评估
模型拟合度评估
判定系数:R2调整判定系数:R2预测值准确度评估
平均绝对误差:MAE
根均方差:RMSE
平均误差率:MAPE
其它评估:残差检验、过拟合检验
结束:课程总结与问题答疑。
傅一航老师的其它课程
数据分析方法及生产运营实际应用 06.20
数据分析方法及生产运营实际应用【课程目标】本课程主要介绍数据分析在生产运营过程中的应用,适用于制造行业/保险行业的数据分析人员等。本课程的主要目的是,帮助学员了解大数据的本质,培养学员的数据意识和数据思维,掌握常用的统计分析方法和工具,以及生产、运营过程中的应用,并以概率的方式来进行决策,提升学员的数据分析及应用能力。本课程具体内容包括:数据决策逻辑,数据决
讲师:傅一航详情
数据建模及模型优化大赛辅导实战 06.20
大数据建模大赛辅导实战【课程目标】本课程主要面向专业人士的大数据建模竞赛辅导需求(假定学员已经完成Python建模及优化--回归篇/分类篇的学习)。通过本课程的学习,达到如下目的:熟悉大赛常用集成模型掌握模型优化常用措施,掌握超参优化策略掌握特征工程处理,以及对模型质量的影响掌握建模工程管道类(Pipeline,ColumnTransformer)的使用【授
讲师:傅一航详情
大数据时代下的精准营销(1天) 06.20
大数据时代的精准营销【课程目标】本课程从实际的市场营销问题出发,了解大数据在市场营销领域的价值以及应用。并对大数据分析与挖掘技术进行了介绍,通过从大量的市场营销数据中分析潜在的客户特征,挖掘客户行为特点,实现精准营销,帮助市场营销团队深入理解业务运作,支持业务策略制定以及营销决策。通过本课程的学习,达到如下目的:了解大数据营销内容,掌握大数据在营销中的应用。
讲师:傅一航详情
大数据时代下的精准营销(1天-金融行业) 06.20
大数据时代的精准营销【课程目标】本课程从实际的市场营销问题出发,了解大数据在市场营销领域的价值以及应用。并对大数据分析与挖掘技术进行了介绍,通过从大量的市场营销数据中分析潜在的客户特征,挖掘客户行为特点,实现精准营销,帮助市场营销团队深入理解业务运作,支持业务策略制定以及营销决策。通过本课程的学习,达到如下目的:了解大数据营销内容,掌握大数据在营销中的应用。
讲师:傅一航详情
大数据思维与商业模式创新,赋能企业增长 06.20
大数据决策思维与商业模式创新,赋能企业增长【课程目标】本课程主要帮助大家理解大数据的基本概念,着重探索大数据的本质,理解大数据的核心价值,以及掌握实现大数据价值的三个关键环节,大数据解决业务问题的六个步骤,然后聚焦大数据的七大核心思维,最后,再用案例说明了大数据在各行业的应用场景。大数据思维,让决策更科学!让管理更高效!让营销更精准!通过本课程的学习,达到如
讲师:傅一航详情
大数据思维与数字化转型(2天) 06.20
大数据思维与应用创新【课程目标】本课程主要帮助大家理解大数据的基本概念,着重探索大数据的本质,理解大数据的核心价值,以及掌握实现大数据价值的三个关键环节,大数据解决业务问题的六个步骤,然后聚焦大数据的七大核心思维,最后,再用案例说明了大数据在各行业的应用场景。大数据思维,让决策更科学!让管理更高效!让营销更精准!通过本课程的学习,达到如下目的:了解大数据基本
讲师:傅一航详情
大数据思维与应用创新(1天) 06.20
大数据思维与应用创新【课程目标】本课程主要帮助大家理解大数据的基本概念,着重探索大数据的本质,理解大数据的核心价值,以及掌握实现大数据价值的三个关键环节,大数据解决业务问题的六个步骤,然后聚焦大数据的七大核心思维,最后,再用案例说明了大数据在各行业的应用场景。大数据思维,让决策更科学!让管理更高效!让营销更精准!通过本课程的学习,达到如下目的:了解大数据基本
讲师:傅一航详情
大数据思维与应用创新(1天-金融) 06.20
大数据思维与应用创新【课程目标】本课程主要帮助大家理解大数据的基本概念,着重探索大数据的本质,理解大数据的核心价值,以及掌握实现大数据价值的三个关键环节,大数据解决业务问题的六个步骤,然后聚焦大数据的七大核心思维,最后,再用案例说明了大数据在各行业的应用场景。大数据思维,让决策更科学!让管理更高效!让营销更精准!通过本课程的学习,达到如下目的:了解大数据基本
讲师:傅一航详情
大数据挖掘工具:SPSSStatistics入门与提高【课程目标】本课程为数据分析和挖掘的工具篇,本课程面向数据分析部等专门负责数据分析与挖掘的人士,专注大数据挖掘工具SPSSStatistics的培训。IBMSPSS工具是面向非专业人士的高级的分析工具(挖掘工具),它提供大量的分析方法和分析模型,能够解决更复杂的业务问题,比如影响因素分析、客户行为预测/精
讲师:傅一航详情
金融行业风险预测模型实战培训(2-3天) 06.20
金融行业风险预测模型实战【课程目标】本课程专注于金融行业的风控模型,面向数据分析部等专门负责数据分析与建模的人士。本课程的主要目的是,培养学员的大数据意识和大数据思维,掌握常用的数据分析方法和数据分析模型,并能够用于对客户行为作分析和预测,提升学员的数据分析综合能力。通过本课程的学习,达到如下目的:掌握数据分析和数据建模的基本过程和步骤掌握客户行为分析中常用
讲师:傅一航详情
- [潘文富] 中小企业招聘广告的内容完
- [潘文富] 优化考核方式,减少员工抵
- [潘文富] 厂家心目中的理想化经销商
- [潘文富] 经销商的产品驱动与管理驱
- [潘文富] 消费行为的背后
- [王晓楠] 辅警转正方式,定向招录成为
- [王晓楠] 西安老师招聘要求,西安各区
- [王晓楠] 西安中小学教师薪资福利待遇
- [王晓楠] 什么是备案制教师?备案制教
- [王晓楠] 2024年陕西省及西安市最
- 1社会保障基础知识(ppt) 21149
- 2安全生产事故案例分析(ppt) 20177
- 3行政专员岗位职责 19034
- 4品管部岗位职责与任职要求 16208
- 5员工守则 15448
- 6软件验收报告 15383
- 7问卷调查表(范例) 15103
- 8工资发放明细表 14540
- 9文件签收单 14183