《金融行业风险预测模型实战》课纲(2-3天)
《金融行业风险预测模型实战》课纲(2-3天)详细内容
《金融行业风险预测模型实战》课纲(2-3天)
金融行业风险预测模型实战【课程目标】
本课程专注于金融行业的风控模型,面向数据分析部等专门负责数据分析与建模的人士。
通过本课程的学习,达到如下目的:
掌握数据建模的基本过程和步骤。
掌握数据建模前的属性筛选的系统方法,为建模打下基础。
掌握常用的分类预测模型,包括逻辑回归、决策树、神经网络、判别分析等等,以及分类模型的优化。
掌握金融行业信用评分卡模型,构建信用评分模型。
主要内容包括数据建模的过程和步骤,以及建模涉及到的分析方法、分析模型,以及模型优化等。
本课程突出数据挖掘的实际应用,结合行业的典型应用特点,从实际问题入手,引出相关知识,进行大数据的收集与处理;探索数据之间的规律及关联性,帮助学员掌握系统的数据预处理方法;介绍常用的模型,训练模型,并优化模型,以达到最优分析结果。
【授课时间】
2-3天时间
【授课对象】
业务支撑、网络中心、IT系统部、数据分析部等对业务数据分析有较高要求的相关专业人员。
【学员要求】
每个学员自备一台便携机(必须)。
便携机中事先安装好Office Excel 2013版本及以上。
便携机中事先安装好IBM SPSS Statistics v24版本以上软件。
注:讲师可以提供试用版本软件及分析数据源。
【授课方式】
基础知识精讲 + 案例演练 + 实际业务问题分析 + SPSS实际操作
【课程大纲】
数据建模基本过程
预测建模六步法
选择模型:基于业务选择恰当的数据模型
属性筛选:选择对目标变量有显著影响的属性来建模
训练模型:采用合适的算法对模型进行训练,寻找到最合适的模型参数
评估模型:进行评估模型的质量,判断模型是否可用
优化模型:如果评估结果不理想,则需要对模型进行优化
应用模型:如果评估结果满足要求,则可应用模型于业务场景
数据挖掘常用的模型
数值预测模型:回归预测、时序预测等
分类预测模型:逻辑回归、决策树、神经网络、支持向量机等
市场细分:聚类、RFM、PCA等
产品推荐:关联分析、协同过滤等
产品优化:回归、随机效用等
产品定价:定价策略/最优定价等
属性筛选/特征选择/变量降维
基于变量本身特征
基于相关性判断
因子合并(PCA等)
IV值筛选(评分卡使用)
基于信息增益判断(决策树使用)
模型评估
模型质量评估指标:R^2、正确率/查全率/查准率/特异性等
预测值评估指标:MAD、MSE/RMSE、MAPE、概率等
模型评估方法:留出法、K拆交叉验证、自助法等
其它评估:过拟合评估
模型优化
优化模型:选择新模型/修改模型
优化数据:新增显著自变量
优化公式:采用新的计算公式
模型实现算法(暂略)
好模型是优化出来的
案例:通信客户流失分析及预警模型
属性筛选方法
问题:如何选择合适的属性来进行建模预测?
比如:价格是否可用于产品销量的预测?套餐的合理性是否会影响客户流失?在欺诈风险中有哪些数据会有异常表现?
属性筛选/变量降维的常用方法
基于变量本身特征来选择属性
基于数据间的相关性来选择属性
基于因子合并(如PCA分析)实现变量的合并
利用IV值筛选
基于信息增益来选择属性
相关分析(衡量变量间的线性相关性)
问题:这两个属性是否会相互影响?影响程度大吗?
相关分析简介相关分析的三个种类
简单相关分析
偏相关分析
距离相关分析
相关系数的三种计算公式
Pearson相关系数
Spearman相关系数
Kendall相关系数
相关分析的假设检验
相关分析的四个基本步骤
演练:年龄和收入的相关分析
演练:营销费用会影响销售额吗
演练:工作时间与收入有相关性吗
演练:话费与网龄的相关分析
偏相关分析
偏相关原理:排除不可控因素后的两变量的相关性
偏相关系数的计算公式
偏相关分析的适用场景
距离相关分析
方差分析(衡量类别变量与数据变量的相关性)
问题:哪些才是影响销量的关键因素?
方差分析的应用场景
方差分析的三个种类
单因素方差分析
多因素方差分析
协方差分析
方差分析的原理
方差分析的四个步骤
解读方差分析结果的两个要点
演练:用户收入对银行欠贷的影响分析
演练:家庭人数对银行欠贷的影响分析
演练:年龄大小对欠贷有影响吗
演练:寻找影响贷款风险的关键因素
多因素方差分析原理
多因素方差分析的作用
多因素方差结果的解读
演练:广告形式、地区对销量的影响因素分析(多因素)
协方差分析原理
协方差分析的适用场景演练:饲料对生猪体重的影响分析(协方差分析)
列联分析/卡方检验(两类别变量的相关性分析)
交叉表与列联表
卡方检验的原理
卡方检验的几个计算公式
列联表分析的适用场景
演练:不同的信用卡类型会有不同欠贷风险吗
演练:有无住房对欠贷的影响分析
案例:行业/规模对风控的影响分析
相关性分析各种方法的适用场景
主成份分析(PCA)
因子分析的原理
因子个数如何选择
如何解读因子含义
案例:提取影响电信客户流失的主成分分析
回归预测模型篇
问题:如何预测产品的销量/销售金额?如果产品跟随季节性变动,该如何预测?新产品上市,如果评估销量上限及销售增速?
常用的数值预测模型
回归预测
时序预测
回归预测/回归分析
问题:如何预测未来的销售量(定量分析)?
回归分析的基本原理和应用场景
回归分析的种类(一元/多元、线性/曲线)
得到回归方程的四种常用方法
Excel函数
散点图+趋势线
线性回归工具
规范求解
线性回归分析的五个步骤
回归方程结果的解读要点
评估回归模型质量的常用指标
评估预测值的准确度的常用指标
演练:散点图找推广费用与销售额的关系(一元线性回归)
演练:推广费用、办公费用与销售额的关系(多元线性回归)
演练:让你的营销费用预算更准确
演练:如何选择最佳的回归预测模型(曲线回归)
带分类变量的回归预测
演练:汽车季度销量预测
演练:工龄、性别与终端销量的关系
演练:如何评估销售目标与资源配置(营业厅)
自动筛选不显著自变量
回归预测模型优化篇
回归分析的基本原理
三个基本概念:总变差、回归变差、剩余变差
方程的显著性检验:是否可以做回归分析?
因素的显著性检验:自变量是否可用?
拟合优度检验:回归模型的质量评估?
理解标准误差的含义:预测的准确性?
回归模型优化思路:寻找最佳回归拟合线
如何处理预测离群值(剔除离群值)
如何剔除非显著因素(剔除不显著因素)
如何进行非线性关系检验(增加非线性自变量)
如何进行相互作用检验(增加相互作用自变量)
如何进行多重共线性检验(剔除共线性自变量)
如何检验误差项(修改因变量)
如何判断模型过拟合(模型过拟合判断)
案例:模型优化案例
规划求解工具简介
自定义回归模型(如何利用规划求解进行自定义模型)
案例:如何对餐厅客流量进行建模及模型优化
好模型都是优化出来的
分类预测模型
问题:如何评估客户购买产品的可能性?或者说,影响客户购买意向的产品关键特性是什么?
分类预测模型概述
常见分类预测模型
评估分类模型的常用指标正确率、查全率/查准率、特异性等
逻辑回归分析模型(LR)
问题:如果评估用户是否购买产品的概率?
逻辑回归模型原理及适用场景
逻辑回归的种类
二项逻辑回归
多项逻辑回归
如何解读逻辑回归方程
带分类自变量的逻辑回归分析
多项逻辑回归
案例:如何评估用户是否会有违约风险(二项逻辑回归)
案例:多品牌选择模型分析(多项逻辑回归)
决策树分类(DT)
问题:如何提取客户流失者、拖欠货款者的特征?如何预测其流失的概率?
决策树分类的原理
决策树的三个关键问题
如何选择最佳属性来构建节点
如何分裂变量
如何修剪决策树
选择最优属性
熵、基尼索引、分类错误
属性划分增益
如何分裂变量
多元划分与二元划分
连续变量离散化(最优划分点)
修剪决策树
剪枝原则
预剪枝与后剪枝
构建决策树的四个算法C5.0、CHAID、CART、QUEST
各种算法的比较
如何选择最优分类模型?
案例:识别银行欠货风险,提取欠货者的特征
案例:客户流失预警与客户挽留模型
人工神经网络(ANN)
神经网络概述
神经网络基本原理
神经网络的结构
神经网络的建立步骤
神经网络的关键问题
BP反向传播网络(MLP)
径向基网络(RBF)
案例:评估银行用户拖欠货款的概率
判别分析(DA)
判别分析原理
距离判别法
典型判别法
贝叶斯判别法
案例:MBA学生录取判别分析
案例:上市公司类别评估
最近邻分类(KNN)
基本原理
关键问题
贝叶斯分类(NBN)
贝叶斯分类原理
计算类别属性的条件概率
估计连续属性的条件概率
贝叶斯网络种类:TAN/马尔科夫毯预测分类概率(计算概率)
案例:评估银行用户拖欠货款的概率
支持向量机(SVM)
SVM基本原理
线性可分问题:最大边界超平面
线性不可分问题:特征空间的转换
维空难与核函数
分类模型优化篇(集成方法)
分类模型的优化思路:利用弱分类器构建强分类模型
集成方法的基本原理
选取多个数据集,构建多个弱分类器
多个弱分类器投票决定
集成方法/元算法的种类
Bagging算法
Boosting算法
Bagging原理
如何选择数据集
如何进行投票
随机森林
Boosting的原理
AdaBoost算法流程
样本选择权重计算公式
分类器投票权重计算公式
银行信用评分卡模型信用评分卡模型简介
评分卡的关键问题
信用评分卡建立过程
筛选重要属性
数据集转化
建立分类模型
计算属性分值
确定审批阈值
筛选重要属性
属性分段
基本概念:WOE、IV
属性重要性评估
数据集转化
连续属性最优分段
计算属性取值的WOE
建立分类模型
训练逻辑回归模型
评估模型
得到字段系数
计算属性分值
计算补偿与刻度值
计算各字段得分
生成评分卡
确定审批阈值
画K-S曲线
计算K-S值
获取最优阈值
案例:构建银行小额贷款的用户信用模型
数据预处理篇(了解你的数据集)
数据预处理的主要任务
数据集成:多个数据集的合并
数据清理:异常值的处理
数据处理:数据筛选、数据精简、数据平衡
变量处理:变量变换、变量派生、变量精简
数据归约:实现降维,避免维灾难
数据集成
外部数据读入:Txt/Excel/SPSS/Database
数据追加(添加数据)
变量合并(添加变量)
数据理解(异常数据处理)
取值范围限定
重复值处理
无效值/错误值处理
缺失值处理
离群值/极端值处理
数据质量评估
数据准备:数据处理
数据筛选:数据抽样/选择(减少样本数量)
数据精简:数据分段/离散化(减少变量的取值个数)
数据平衡:正反样本比例均衡
数据准备:变量处理
变量变换:原变量取值更新,比如标准化
变量派生:根据旧变量生成新的变量
变量精简:降维,减少变量个数
数据降维
常用降维的方法
如何确定变量个数
特征选择:选择重要变量,剔除不重要的变量
从变量本身考虑
从输入变量与目标变量的相关性考虑
对输入变量进行合并
因子分析(主成分分析)
因子分析的原理
因子个数如何选择
如何解读因子含义
案例:提取影响电信客户流失的主成分分析
数据探索性分析
常用统计指标分析
单变量:数值变量/分类变量
双变量:交叉分析/相关性分析
多变量:特征选择、因子分析
演练:描述性分析(频数、描述、探索、分类汇总)
数据可视化
数据可视化:柱状图、条形图、饼图、折线图、箱图、散点图等
图形的表达及适用场景
演练:各种图形绘制
数据建模实战篇
电信业客户流失预警和客户挽留模型实战
银行欠贷风险预测模型实战
银行信用卡评分模型实战
结束:课程总结与问题答疑。
傅一航老师的其它课程
数据分析方法及生产运营实际应用 06.20
数据分析方法及生产运营实际应用【课程目标】本课程主要介绍数据分析在生产运营过程中的应用,适用于制造行业/保险行业的数据分析人员等。本课程的主要目的是,帮助学员了解大数据的本质,培养学员的数据意识和数据思维,掌握常用的统计分析方法和工具,以及生产、运营过程中的应用,并以概率的方式来进行决策,提升学员的数据分析及应用能力。本课程具体内容包括:数据决策逻辑,数据决
讲师:傅一航详情
数据建模及模型优化大赛辅导实战 06.20
大数据建模大赛辅导实战【课程目标】本课程主要面向专业人士的大数据建模竞赛辅导需求(假定学员已经完成Python建模及优化--回归篇/分类篇的学习)。通过本课程的学习,达到如下目的:熟悉大赛常用集成模型掌握模型优化常用措施,掌握超参优化策略掌握特征工程处理,以及对模型质量的影响掌握建模工程管道类(Pipeline,ColumnTransformer)的使用【授
讲师:傅一航详情
大数据时代下的精准营销(1天) 06.20
大数据时代的精准营销【课程目标】本课程从实际的市场营销问题出发,了解大数据在市场营销领域的价值以及应用。并对大数据分析与挖掘技术进行了介绍,通过从大量的市场营销数据中分析潜在的客户特征,挖掘客户行为特点,实现精准营销,帮助市场营销团队深入理解业务运作,支持业务策略制定以及营销决策。通过本课程的学习,达到如下目的:了解大数据营销内容,掌握大数据在营销中的应用。
讲师:傅一航详情
大数据时代下的精准营销(1天-金融行业) 06.20
大数据时代的精准营销【课程目标】本课程从实际的市场营销问题出发,了解大数据在市场营销领域的价值以及应用。并对大数据分析与挖掘技术进行了介绍,通过从大量的市场营销数据中分析潜在的客户特征,挖掘客户行为特点,实现精准营销,帮助市场营销团队深入理解业务运作,支持业务策略制定以及营销决策。通过本课程的学习,达到如下目的:了解大数据营销内容,掌握大数据在营销中的应用。
讲师:傅一航详情
大数据思维与商业模式创新,赋能企业增长 06.20
大数据决策思维与商业模式创新,赋能企业增长【课程目标】本课程主要帮助大家理解大数据的基本概念,着重探索大数据的本质,理解大数据的核心价值,以及掌握实现大数据价值的三个关键环节,大数据解决业务问题的六个步骤,然后聚焦大数据的七大核心思维,最后,再用案例说明了大数据在各行业的应用场景。大数据思维,让决策更科学!让管理更高效!让营销更精准!通过本课程的学习,达到如
讲师:傅一航详情
大数据思维与数字化转型(2天) 06.20
大数据思维与应用创新【课程目标】本课程主要帮助大家理解大数据的基本概念,着重探索大数据的本质,理解大数据的核心价值,以及掌握实现大数据价值的三个关键环节,大数据解决业务问题的六个步骤,然后聚焦大数据的七大核心思维,最后,再用案例说明了大数据在各行业的应用场景。大数据思维,让决策更科学!让管理更高效!让营销更精准!通过本课程的学习,达到如下目的:了解大数据基本
讲师:傅一航详情
大数据思维与应用创新(1天) 06.20
大数据思维与应用创新【课程目标】本课程主要帮助大家理解大数据的基本概念,着重探索大数据的本质,理解大数据的核心价值,以及掌握实现大数据价值的三个关键环节,大数据解决业务问题的六个步骤,然后聚焦大数据的七大核心思维,最后,再用案例说明了大数据在各行业的应用场景。大数据思维,让决策更科学!让管理更高效!让营销更精准!通过本课程的学习,达到如下目的:了解大数据基本
讲师:傅一航详情
大数据思维与应用创新(1天-金融) 06.20
大数据思维与应用创新【课程目标】本课程主要帮助大家理解大数据的基本概念,着重探索大数据的本质,理解大数据的核心价值,以及掌握实现大数据价值的三个关键环节,大数据解决业务问题的六个步骤,然后聚焦大数据的七大核心思维,最后,再用案例说明了大数据在各行业的应用场景。大数据思维,让决策更科学!让管理更高效!让营销更精准!通过本课程的学习,达到如下目的:了解大数据基本
讲师:傅一航详情
大数据挖掘工具:SPSSStatistics入门与提高【课程目标】本课程为数据分析和挖掘的工具篇,本课程面向数据分析部等专门负责数据分析与挖掘的人士,专注大数据挖掘工具SPSSStatistics的培训。IBMSPSS工具是面向非专业人士的高级的分析工具(挖掘工具),它提供大量的分析方法和分析模型,能够解决更复杂的业务问题,比如影响因素分析、客户行为预测/精
讲师:傅一航详情
金融行业风险预测模型实战培训(2-3天) 06.20
金融行业风险预测模型实战【课程目标】本课程专注于金融行业的风控模型,面向数据分析部等专门负责数据分析与建模的人士。本课程的主要目的是,培养学员的大数据意识和大数据思维,掌握常用的数据分析方法和数据分析模型,并能够用于对客户行为作分析和预测,提升学员的数据分析综合能力。通过本课程的学习,达到如下目的:掌握数据分析和数据建模的基本过程和步骤掌握客户行为分析中常用
讲师:傅一航详情
- [潘文富] 中小企业招聘广告的内容完
- [潘文富] 优化考核方式,减少员工抵
- [潘文富] 厂家心目中的理想化经销商
- [潘文富] 经销商的产品驱动与管理驱
- [潘文富] 消费行为的背后
- [王晓楠] 辅警转正方式,定向招录成为
- [王晓楠] 西安老师招聘要求,西安各区
- [王晓楠] 西安中小学教师薪资福利待遇
- [王晓楠] 什么是备案制教师?备案制教
- [王晓楠] 2024年陕西省及西安市最
- 1社会保障基础知识(ppt) 21149
- 2安全生产事故案例分析(ppt) 20178
- 3行政专员岗位职责 19035
- 4品管部岗位职责与任职要求 16208
- 5员工守则 15448
- 6软件验收报告 15384
- 7问卷调查表(范例) 15103
- 8工资发放明细表 14541
- 9文件签收单 14184